Enhancement of k-anonymity algorithm for privacy preservation in social media
نویسندگان
چکیده
منابع مشابه
Clustering Based K-anonymity Algorithm for Privacy Preservation
K-anonymity is an effective model for protecting privacy while publishing data, which can be implemented by different ways. Among them, local generalization are popular because of its low information loss. But such algorithms are generally computation expensive making it difficult to perform well in the case of large amount of data. In order to solve this problem, this paper proposes a clusteri...
متن کاملA Differentiated Anonymity Algorithm for Social Network Privacy Preservation
Devising methods to publish social network data in a form that affords utility without compromising privacy remains a longstanding challenge, while many existing methods based on k-anonymity algorithms on social networks may result in nontrivial utility loss without analyzing the social network topological structure and without considering the attributes of sparse distribution. Toward this obje...
متن کاملA Clustering K-Anonymity Scheme for Location Privacy Preservation
The continuous advances in sensing and positioning technologies have resulted in a dramatic increase in popularity of LocationBased Services (LBS). Nevertheless, the LBS can lead to user privacy breach due to sharing location information with potentially malicious services. A high degree of location privacy preservation for LBS is extremely required. In this paper, a clustering K-anonymity sche...
متن کاملA K-Anonymity Based Schema for Location Privacy Preservation
In recent years, with the development of mobile devices, the location based services (LBSs) have become more and more prevailing and most applications installed on these devices call for location information. Yet, the untrusted LBS provider can collect these location information, which may potentially threaten users’ location privacy. In view of this challenge, we propose a two-tier schema for ...
متن کاملA k -Anonymity Clustering Method for Effective Data Privacy Preservation
Data privacy preservation has drawn considerable interests in data mining research recently. The k-anonymity model is a simple and practical approach for data privacy preservation. This paper proposes a novel clustering method for conducting the k-anonymity model effectively. In the proposed clustering method, feature weights are automatically adjusted so that the information distortion can be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering & Technology
سال: 2018
ISSN: 2227-524X
DOI: 10.14419/ijet.v7i2.27.11747